
1 Unit 2: Data ,expressions, Statements

UNIT II
DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string,
and list; variables, expressions, statements, tuple assignment, precedence of operators,
comments; Modules and functions, function definition and use, flow of execution,
parameters and arguments; Illustrative programs: exchange the values of two
variables, circulate the values of n variables, distance between two points.

1. INTRODUCTION TO PYTHON:
Python is a general-purpose interpreted, interactive, object-oriented, and high-
level programming language.
It was created by Guido van Rossum during 1985- 1990.
Python got its name from “Monty Python’s flying circus”. Python was released in the
year 2000.
 Python is interpreted: Python is processed at runtime by the interpreter. You

do not need to compile your program before executing it.
 Python is Interactive: You can actually sit at a Python prompt and interact with

the interpreter directly to write your programs.
 Python is Object-Oriented: Python supports Object-Oriented style or technique

of programming that encapsulates code within objects.
 Python is a Beginner's Language: Python is a great language for the beginner-

level programmers and supports the development of a wide range of
applications.

1.1. Python Features:
 Easy-to-learn: Python is clearly defined and easily readable. The structure

of the program is very simple. It uses few keywords.
 Easy-to-maintain: Python's source code is fairly easy-to-maintain.
 Portable: Python can run on a wide variety of hardware platforms and has the

same interface on all platforms.
 Interpreted: Python is processed at runtime by the interpreter. So, there is no

need to compile a program before executing it. You can simply run the program.
 Extensible: Programmers can embed python within their C,C++,Java script

,ActiveX, etc.
 Free and Open Source: Anyone can freely distribute it, read the source code, and

edit it.
 High Level Language: When writing programs, programmers concentrate on

solutions of the current problem, no need to worry about the low level details.
 Scalable: Python provides a better structure and support for large programs

than shell scripting.
1.2. Applications:

 Bit Torrent file sharing
 Google search engine, Youtube
 Intel, Cisco, HP, IBM
 i–Robot
 NASA

2 Unit 2: Data ,expressions, Statements

 Facebook, Drop box

1.3. Python interpreter:
Interpreter: To execute a program in a high-level language by translating it one line at
a time.
Compiler: To translate a program written in a high-level language into a low-level
language all at once, in preparation for later execution.

Compiler Interpreter

Compiler Takes Entire program as input
Interpreter Takes Single instruction as
input

Intermediate Object Code is Generated
No Intermediate Object Code
is Generated

Conditional Control Statements are
Executes faster

Conditional Control Statements are
Executes slower

Memory Requirement is More(Since Object
Code is Generated)

Memory Requirement is Less

Program need not be compiled every time
Every time higher level program is
converted into lower level program

Errors are displayed after entire
program is checked

Errors are displayed for every
instruction interpreted (if any)

Example : C Compiler Example : PYTHON

1.4 MODES OF PYTHON INTERPRETER:
Python Interpreter is a program that reads and executes Python code. It uses 2 modes
of Execution.

1. Interactive mode
2. Script mode

Interactive mode:
 Interactive Mode, as the name suggests, allows us to interact with OS.
 When we type Python statement, interpreter displays the result(s)

immediately.
Advantages:

 Python, in interactive mode, is good enough to learn, experiment or explore.
 Working in interactive mode is convenient for beginners and for testing small

pieces of code.
Drawback:

 We cannot save the statements and have to retype all the statements once again to
re-run them.

In interactive mode, you type Python programs and the interpreter displays the result:
>>> 1 + 1
2
The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready for you
to enter code. If you type 1 + 1, the interpreter replies 2.
>>> print ('Hello, World!')
Hello, World!

3 Unit 2: Data ,expressions, Statements

This is an example of a print statement. It displays a result on the screen. In this case,
the result is the words.

Script mode:
 In script mode, we type python program in a file and then use interpreter to

execute the content of the file.
 Scripts can be saved to disk for future use. Python scripts have the

extension .py, meaning that the filename ends with .py
 Save the code with filename.py and run the interpreter in script mode to execute

the script.

Interactive mode Script mode
A way of using the Python interpreter by
typing commands and expressions at the
prompt.

A way of using the Python interpreter to
read and execute statements in a script.

Cant save and edit the code Can save and edit the code
If we want to experiment with the code,
we can use interactive mode.

If we are very clear about the code, we can
use script mode.

we cannot save the statements for further
use and we have to retype
all the statements to re-run them.

we can save the statements for further use
and we no need to retype
all the statements to re-run them.

We can see the results immediately. We cant see the code immediately.

Integrated Development Learning Environment (IDLE):

 Is a graphical user interface which is completely written in Python.
 It is bundled with the default implementation of the python language and also

comes with optional part of the Python packaging.
Features of IDLE:
 Multi-window text editor with syntax highlighting.

https://en.wikipedia.org/wiki/Syntax_highlighting

4 Unit 2: Data ,expressions, Statements

 Auto completion with smart indentation.
 Python shell to display output with syntax highlighting.

2.VALUES AND DATA TYPES

Value:

Value can be any letter ,number or string.
Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to different
datatypes.)

Data type:
Every value in Python has a data type.
It is a set of values, and the allowable operations on those values.

Python has four standard data types:

2.1Numbers:
 Number data type stores Numerical Values.
 This data type is immutable [i.e. values/items cannot be changed].
 Python supports integers, floating point numbers and complex numbers. They

are defined as,

 2.2 Sequence:
 A sequence is an ordered collection of items, indexed by positive integers.
 It is a combination of mutable (value can be changed) and immutable (values

cannot be changed) data types.

5 Unit 2: Data ,expressions, Statements

 There are three types of sequence data type available in Python, they are
1. Strings
2. Lists
3. Tuples

2.2.1 Strings:
 A String in Python consists of a series or sequence of characters - letters,

numbers, and special characters.
 Strings are marked by quotes:

 single quotes (' ') Eg, 'This a string in single quotes'
 double quotes (" ") Eg, "'This a string in double quotes'"
 triple quotes(""" """) Eg, This is a paragraph. It is made up of

multiple lines and sentences."""
 Individual character in a string is accessed using a subscript (index).
 Characters can be accessed using indexing and slicing operations
Strings are immutable i.e. the contents of the string cannot be changed after it is

created.
Indexing:

 Positive indexing helps in accessing the string from the beginning
 Negative subscript helps in accessing the string from the end.
 Subscript 0 or –ve n(where n is length of the string) displays the first element.

 Example: A[0] or A[-5] will display “H”
 Subscript 1 or –ve (n-1) displays the second element.

 Example: A[1] or A[-4] will display “E”
Operations on string:

i. Indexing
ii. Slicing

iii. Concatenation
iv. Repetitions
v. Member ship

Creating a string >>> s="good morning" Creating the list with elements of
different data types.

Indexing >>> print(s[2])
o
>>> print(s[6])
O

 Accessing the item in the
position 0

 Accessing the item in the
position 2

Slicing(ending
position -1)

>>> print(s[2:])
od morning

- Displaying items from 2nd till
last.

6 Unit 2: Data ,expressions, Statements

Slice operator is
used to extract
part of a data
type

>>> print(s[:4])
Good

- Displaying items from 1st
position till 3rd .

Concatenation >>>print(s+"friends")
good morningfriends

-Adding and printing the
characters of two strings.

Repetition >>>print(s*2)
good morninggood
morning

 Creates new strings,
concatenating multiple copies of
the same string

in, not in
(membership
operator)

>>> s="good morning"
 >>>"m" in s
True
>>> "a" not in s
True

Using membership operators to
check a particular character is in
string or not. Returns true if
present.

2.2.2 Lists
 List is an ordered sequence of items. Values in the list are called elements / items.
 It can be written as a list of comma-separated items (values) between square

brackets[].
 Items in the lists can be of different data types.

Operations on list:

Indexing
Slicing
Concatenation
Repetitions
Updation, Insertion, Deletion

Creating a list >>>list1=["python", 7.79, 101,
"hello”]
>>>list2=["god",6.78,9]

Creating the list with
elements of different data
types.

Indexing >>>print(list1[0])
python
>>> list1[2]
101

 Accessing the item in

the position 0

 Accessing the item in

the position 2

Slicing(ending
position -1)
Slice operator is
used to extract
part of a string, or
some part of a list
Python

>>> print(list1[1:3])
[7.79, 101]
>>>print(list1[1:])
[7.79, 101, 'hello']

- Displaying items from 1st
till 2nd.
- Displaying items from 1st
position till last.

Concatenation >>>print(list1+list2)
['python', 7.79, 101, 'hello', 'god',

-Adding and printing the
items of two lists.

7 Unit 2: Data ,expressions, Statements

6.78, 9]
Repetition >>> list2*3

['god', 6.78, 9, 'god', 6.78, 9, 'god',
6.78, 9]

 Creates new strings,
concatenating multiple
copies of the same string

Updating the list >>> list1[2]=45
>>>print(list1)
[‘python’, 7.79, 45, ‘hello’]

Updating the list using index
value

Inserting an
element

>>> list1.insert(2,"program")
>>> print(list1)
['python', 7.79, 'program', 45,
'hello']

Inserting an element in 2nd
position

Removing an
element

>>> list1.remove(45)
>>> print(list1)
['python', 7.79, 'program', 'hello']

Removing an element by
giving the element directly

2.2.4Tuple:
 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.
 A tuple is an immutable list. i.e. once a tuple has been created, you can't add

elements to a tuple or remove elements from the tuple.
 Benefit of Tuple:
 Tuples are faster than lists.
 If the user wants to protect the data from accidental changes, tuple can be used.
 Tuples can be used as keys in dictionaries, while lists can't.

Basic Operations:

Creating a tuple >>>t=("python", 7.79, 101,

"hello”)

Creating the tuple with elements

of different data types.

Indexing >>>print(t[0])

python

>>> t[2]

101

 Accessing the item in the

position 0

 Accessing the item in the

position 2

Slicing(ending

position -1)

>>>print(t[1:3])

(7.79, 101)

 Displaying items from 1st

till 2nd.

Concatenation >>> t+("ram", 67)

('python', 7.79, 101, 'hello', 'ram',

67)

 Adding tuple elements at

the end of another tuple

elements

Repetition >>>print(t*2)

('python', 7.79, 101, 'hello',

'python', 7.79, 101, 'hello')

 Creates new strings,

concatenating multiple copies of

the same string

Altering the tuple data type leads to error. Following error occurs when user tries to
do.

8 Unit 2: Data ,expressions, Statements

>>> t[0]="a"
Trace back (most recent call last):
 File "<stdin>", line 1, in <module>
Type Error: 'tuple' object does not support item assignment

2.3 Mapping

-This data type is unordered and mutable.
-Dictionaries fall under Mappings.

2.3.1Dictionaries:
 Lists are ordered sets of objects, whereas dictionaries are unordered sets.
 Dictionary is created by using curly brackets. i,e. {}
 Dictionaries are accessed via keys and not via their position.
 A dictionary is an associative array (also known as hashes). Any key of the

dictionary is associated (or mapped) to a value.
 The values of a dictionary can be any Python data type. So dictionaries are

unordered key-value-pairs(The association of a key and a value is called a key-
value pair)

Dictionaries don't support the sequence operation of the sequence data types like
strings, tuples and lists.

Creating a
dictionary

>>> food = {"ham":"yes", "egg" :
"yes", "rate":450 }
>>>print(food)
{'rate': 450, 'egg': 'yes', 'ham':
'yes'}

Creating the dictionary with
elements of different data
types.

Indexing >>>> print(food["rate"])
450

Accessing the item with keys.

Slicing(ending
position -1)

>>>print(t[1:3])
(7.79, 101)

Displaying items from 1st till
2nd.

If you try to access a key which doesn't exist, you will get an error message:

>>> words = {"house" : "Haus", "cat":"Katze"}
>>> words["car"]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'car'

Data type Compile time Run time
int a=10 a=int(input(“enter a”))
float a=10.5 a=float(input(“enter a”))
string a=”panimalar” a=input(“enter a string”)
list a=[20,30,40,50] a=list(input(“enter a list”))
tuple a=(20,30,40,50) a=tuple(input(“enter a tuple”))

9 Unit 2: Data ,expressions, Statements

3.Variables,Keywords Expressions, Statements, Comments, Docstring ,Lines And
Indentation, Quotation In Python, Tuple Assignment:

3.1VARIABLES:

 A variable allows us to store a value by assigning it to a name, which can be used
later.

 Named memory locations to store values.
 Programmers generally choose names for their variables that are meaningful.
 It can be of any length. No space is allowed.
 We don't need to declare a variable before using it. In Python, we simply assign a

value to a variable and it will exist.

Assigning value to variable:
Value should be given on the right side of assignment operator(=) and variable on left
side.

>>>counter =45
print(counter)

Assigning a single value to several variables simultaneously:

 >>> a=b=c=100
Assigning multiple values to multiple variables:

>>> a,b,c=2,4,"ram"

3.2KEYWORDS:

 Keywords are the reserved words in Python.
 We cannot use a keyword as variable name, function name or any other

identifier.
 They are used to define the syntax and structure of the Python language.
 Keywords are case sensitive.

3.3IDENTIFIERS:

 Identifier is the name given to entities like class, functions, variables etc. in
Python.
 Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to

Z) or digits (0 to 9) or an underscore (_).

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/function

10 Unit 2: Data ,expressions, Statements

 all are valid example.
 An identifier cannot start with a digit.
 Keywords cannot be used as identifiers.
 Cannot use special symbols like !, @, #, $, % etc. in our identifier.
 Identifier can be of any length.

Example:
Names like myClass, var_1, and this_is_a_long_variable

Valid declarations Invalid declarations
Num
Num
Num1
_NUM
NUM_temp2
IF
Else

Number 1
num 1
addition of program
1Num
Num.no
if
else

3.4 STATEMENTS AND EXPRESSIONS:

3.4.1 Statements:
 -Instructions that a Python interpreter can executes are called statements.
 -A statement is a unit of code like creating a variable or displaying a value.

>>> n = 17
>>> print(n)

 Here, The first line is an assignment statement that gives a value to n.
 The second line is a print statement that displays the value of n.
3.4.2Expressions:
 -An expression is a combination of values, variables, and operators.
 - A value all by itself is considered an expression, and also a variable.
 - So the following are all legal expressions:

>>> 42
42
>>> a=2
>>> a+3+2
7
>>> z=("hi"+"friend")
>>> print(z)
hifriend

3.5 INPUT AND OUTPUT

INPUT: Input is data entered by user (end user) in the program.
In python, input () function is available for input.

Syntax for input() is:
variable = input (“data”)

11 Unit 2: Data ,expressions, Statements

Example:

>>> x=input("enter the name:")
enter the name: george

>>>y=int(input("enter the number"))
enter the number 3

#python accepts string as default data type. conversion is required for type.

OUTPUT: Output can be displayed to the user using Print statement .

Syntax:
print (expression/constant/variable)

Example:

>>> print ("Hello")
Hello

3.6 COMMENTS:

 A hash sign (#) is the beginning of a comment.
 Anything written after # in a line is ignored by interpreter.

 Eg:percentage = (minute * 100) / 60 # calculating percentage of an hour
 Python does not have multiple-line commenting feature. You have to

comment each line individually as follows :
Example:
 # This is a comment.

This is a comment, too.
I said that already.

3.7 DOCSTRING:
 Docstring is short for documentation string.
 It is a string that occurs as the first statement in a module, function, class, or

method definition. We must write what a function/class does in the docstring.
 Triple quotes are used while writing docstrings.

Syntax:
functionname__doc.__

Example:

def double(num):
 """Function to double the value"""
 return 2*num
>>> print(double.__doc__)
Function to double the value

3.8 LINES AND INDENTATION:

 Most of the programming languages like C, C++, Java use braces { } to define a
block of code. But, python uses indentation.

 Blocks of code are denoted by line indentation.
 It is a space given to the block of codes for class and function definitions or flow

control.

12 Unit 2: Data ,expressions, Statements

Example:

a=3
b=1
if a>b:
 print("a is greater")
else:
 print("b is greater")

3.9 QUOTATION IN PYTHON:

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals.
Anything that is represented using quotations are considered as string.

 single quotes (' ') Eg, 'This a string in single quotes'
 double quotes (" ") Eg, "'This a string in double quotes'"
 triple quotes(""" """) Eg, This is a paragraph. It is made up of multiple lines

and sentences."""

3.10 TUPLE ASSIGNMENT

 An assignment to all of the elements in a tuple using a single assignment
statement.

 Python has a very powerful tuple assignment feature that allows a tuple of
variables on the left of an assignment to be assigned values from a tuple on the
right of the assignment.

 The left side is a tuple of variables; the right side is a tuple of values.
 Each value is assigned to its respective variable.
 All the expressions on the right side are evaluated before any of the assignments.

This feature makes tuple assignment quite versatile.
 Naturally, the number of variables on the left and the number of values on the

right have to be the same.
>>> (a, b, c, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack

Example:
-It is useful to swap the values of two variables. With conventional assignment
statements, we have to use a temporary variable. For example, to swap a and b:

Swap two numbers Output:
a=2;b=3
print(a,b)
temp = a
a = b
b = temp
print(a,b)

 (2, 3)
(3, 2)
>>>

13 Unit 2: Data ,expressions, Statements

-Tuple assignment solves this problem neatly:

(a, b) = (b, a)

-One way to think of tuple assignment is as tuple packing/unpacking.
In tuple packing, the values on the left are ‘packed’ together in a tuple:

>>> b = ("George", 25, "20000") # tuple packing

-In tuple unpacking, the values in a tuple on the right are ‘unpacked’ into the
variables/names on the right:

>>> b = ("George", 25, "20000") # tuple packing
>>> (name, age, salary) = b # tuple unpacking
>>> name
'George'
>>> age
25
>>> salary
'20000'

-The right side can be any kind of sequence (string,list,tuple)
Example:
-To split an email address in to user name and a domain

>>> mailid='god@abc.org'
>>> name,domain=mailid.split('@')
>>> print name
god
>>> print (domain)
abc.org

4.OPERATORS:

 Operators are the constructs which can manipulate the value of operands.
 Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is

called operator
 Types of Operators:

 -Python language supports the following types of operators
 Arithmetic Operators
 Comparison (Relational) Operators
 Assignment Operators
 Logical Operators
 Bitwise Operators
 Membership Operators
 Identity Operators

14 Unit 2: Data ,expressions, Statements

4.1 Arithmetic operators:
 They are used to perform mathematical operations like addition, subtraction,
multiplication etc. Assume, a=10 and b=5

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand
operand.

a – b = -10

*
Multiplication

Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand
and returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation on
operators

a**b =10 to the
power 20

// Floor Division - The division of operands where the
result is the quotient in which the digits after the
decimal point are removed

5//2=2

Examples
a=10
b=5
print("a+b=",a+b)
print("a-b=",a-b)
print("a*b=",a*b)
print("a/b=",a/b)
print("a%b=",a%b)
print("a//b=",a//b)
print("a**b=",a**b)

Output:
a+b= 15
a-b= 5
a*b= 50
a/b= 2.0
a%b= 0
a//b= 2
a**b= 100000

4.2 Comparison (Relational) Operators:
 Comparison operators are used to compare values.
 It either returns True or False according to the condition. Assume, a=10 and b=5

Operator Description Example

== If the values of two operands are equal, then the condition (a == b) is

15 Unit 2: Data ,expressions, Statements

becomes true. not true.

!= If values of two operands are not equal, then condition
becomes true.

(a!=b) is
true

> If the value of left operand is greater than the value of right
operand, then condition becomes true.

(a > b) is
not true.

< If the value of left operand is less than the value of right
operand, then condition becomes true.

(a < b) is
true.

>= If the value of left operand is greater than or equal to the
value of right operand, then condition becomes true.

(a >= b) is
not true.

<= If the value of left operand is less than or equal to the value
of right operand, then condition becomes true.

(a <= b) is
true.

Example
a=10
b=5
print("a>b=>",a>b)
print("a>b=>",a<b)
print("a==b=>",a==b)
print("a!=b=>",a!=b)
print("a>=b=>",a<=b)
print("a>=b=>",a>=b)

Output:
a>b=> True
a>b=> False
a==b=> False
a!=b=> True
a>=b=> False
a>=b=> True

4.3 Assignment Operators:
 -Assignment operators are used in Python to assign values to variables.

Operator Description Example

= Assigns values from right side operands to left side
operand

c = a + b
assigns
value of a +
b into c

+= Add AND It adds right operand to the left operand and assign
the result to left operand

c += a is
equivalent
to c = c + a

-= Subtract
AND

It subtracts right operand from the left operand and
assign the result to left operand

c -= a is
equivalent
to c = c - a

16 Unit 2: Data ,expressions, Statements

*= Multiply
AND

It multiplies right operand with the left operand and
assign the result to left operand

c *= a is
equivalent
to c = c * a

/= Divide
AND

It divides left operand with the right operand and
assign the result to left operand

c /= a is
equivalent
to c = c / ac
/= a is
equivalent
to c = c / a

%= Modulus
AND

It takes modulus using two operands and assign the
result to left operand

c %= a is
equivalent
to c = c % a

**= Exponent
AND

Performs exponential (power) calculation on
operators and assign value to the left operand

c **= a is
equivalent
to c = c ** a

//= Floor
Division

It performs floor division on operators and assign
value to the left operand

c //= a is
equivalent
to c = c // a

Example
a = 21
b = 10
c = 0
c = a + b
print("Line 1 - Value of c is ", c)
c += a
print("Line 2 - Value of c is ", c)
c *= a
print("Line 3 - Value of c is ", c)
c /= a
print("Line 4 - Value of c is ", c)
c = 2
c %= a
print("Line 5 - Value of c is ", c)
c **= a
print("Line 6 - Value of c is ", c)
c //= a
print("Line 7 - Value of c is ", c)

Output
Line 1 - Value of c is 31
Line 2 - Value of c is 52
Line 3 - Value of c is 1092
Line 4 - Value of c is 52.0
Line 5 - Value of c is 2
Line 6 - Value of c is 2097152
Line 7 - Value of c is 99864

17 Unit 2: Data ,expressions, Statements

4.4 Logical Operators:
 -Logical operators are the and, or, not operators.

Example
a = True
b = False
print('a and b is',a and b)
print('a or b is',a or b)
print('not a is',not a)

Output
x and y is False
x or y is True
not x is False

4.5 Bitwise Operators:
 A bitwise operation operates on one or more bit patterns at the level of individual

bits
Example: Let x = 10 (0000 1010 in binary) and
 y = 4 (0000 0100 in binary)

Example
a = 60 # 60 = 0011 1100
b = 13 # 13 = 0000 1101
c = 0
c = a & b; # 12 = 0000 1100
print "Line 1 - Value of c is ", c
c = a | b; # 61 = 0011 1101
print "Line 2 - Value of c is ", c
c = a ^ b; # 49 = 0011 0001
print "Line 3 - Value of c is ", c
c = ~a; # -61 = 1100 0011

Output
Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is -61
Line 5 - Value of c is 240
Line 6 - Value of c is 15

18 Unit 2: Data ,expressions, Statements

print "Line 4 - Value of c is ", c
c = a << 2; # 240 = 1111 0000
print "Line 5 - Value of c is ", c
c = a >> 2; # 15 = 0000 1111
print "Line 6 - Value of c is ", c

4.6 Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list,
tuple, dictionary or not.

 Let, x=[5,3,6,4,1]. To check particular item in list or not, in and not in operators
are used.

Example:
x=[5,3,6,4,1]
>>> 5 in x
True
>>> 5 not in x
False

4.7 Identity Operators:
 They are used to check if two values (or variables) are located on the same part of

the
memory.

Example
x = 5
y = 5
x2 = 'Hello'
y2 = 'Hello'
print(x1 is not y1)
print(x2 is y2)

Output
False
True

19 Unit 2: Data ,expressions, Statements

5.OPERATOR PRECEDENCE:

When an expression contains more than one operator, the order of evaluation
depends on the order of operations.

Operator Description

** Exponentiation (raise to the power)

~ + - Complement, unary plus and minus (method
names for the last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

-For mathematical operators, Python follows mathematical convention.
-The acronym PEMDAS (Parentheses, Exponentiation, Multiplication, Division,
Addition, Subtraction) is a useful way to remember the rules:
 Parentheses have the highest precedence and can be used to force an expression

to evaluate in the order you want. Since expressions in parentheses are evaluated
first, 2 * (3-1)is 4, and (1+1)**(5-2) is 8.

 You can also use parentheses to make an expression easier to read, as in (minute
* 100) / 60, even if it doesn’t change the result.

 Exponentiation has the next highest precedence, so 1 + 2**3 is 9, not 27, and 2
*3**2 is 18, not 36.

 Multiplication and Division have higher precedence than Addition and
Subtraction. So 2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

 Operators with the same precedence are evaluated from left to right (except
exponentiation).

20 Unit 2: Data ,expressions, Statements

Example:
a=9-12/3+3*2-1
a=?
a=9-4+3*2-1
a=9-4+6-1
a=5+6-1
a=11-1
a=10

A=2*3+4%5-3/2+6
A=6+4%5-3/2+6
A=6+4-3/2+6
A=6+4-1+6
A=10-1+6
A=9+6
A=15

find m=?
m=-43||8&&0||-2
m=-43||0||-2
m=1||-2
m=1

a=2,b=12,c=1
d=ac
d=2<12>1
d=1>1
d=0

a=2,b=12,c=1
d=ac-1
d=2<12>1-1
d=2<12>0
d=1>0
d=1

a=2*3+4%5-3//2+6
a=6+4-1+6
a=10-1+6
a=15

6.Functions, Function Definition And Use, Function call, Flow Of Execution,
Function Prototypes, Parameters And Arguments, Return statement,
Argumentstypes,Modules

6.1 FUNCTIONS:

 Function is a sub program which consists of set of instructions used to
perform a specific task. A large program is divided into basic building
blocks called function.

Need For Function:
 When the program is too complex and large they are divided into parts. Each part

is separately coded and combined into single program. Each subprogram is called
as function.

 Debugging, Testing and maintenance becomes easy when the program is divided
into subprograms.

 Functions are used to avoid rewriting same code again and again in a program.
 Function provides code re-usability
 The length of the program is reduced.

Types of function:
 Functions can be classified into two categories:

i) user defined function
ii) Built in function

i) Built in functions
 Built in functions are the functions that are already created and stored in python.
 These built in functions are always available for usage and accessed by a

programmer. It cannot be modified.
Built in function Description

21 Unit 2: Data ,expressions, Statements

>>>max(3,4)
4

returns largest element

>>>min(3,4)
3

returns smallest element

>>>len("hello")
5

#returns length of an object

>>>range(2,8,1)
[2, 3, 4, 5, 6, 7]

#returns range of given values

>>>round(7.8)
8.0

#returns rounded integer of the given number

>>>chr(5)
\x05'

#returns a character (a string) from an integer

>>>float(5)
5.0

#returns float number from string or integer

>>>int(5.0)
5

returns integer from string or float

>>>pow(3,5)
243

#returns power of given number

>>>type(5.6)
<type 'float'>

#returns data type of object to which it belongs

>>>t=tuple([4,6.0,7])
(4, 6.0, 7)

to create tuple of items from list

>>>print("good morning")
Good morning

displays the given object

>>>input("enter name: ")
enter name : George

reads and returns the given string

ii)User Defined Functions:
 User defined functions are the functions that programmers create for their

requirement and use.
 These functions can then be combined to form module which can be used in

other programs by importing them.
 Advantages of user defined functions:

 Programmers working on large project can divide the workload by making
different functions.

 If repeated code occurs in a program, function can be used to include those
codes and execute when needed by calling that function.

6.2 Function definition: (Sub program)

 def keyword is used to define a function.
 Give the function name after def keyword followed by parentheses in which

arguments are given.
 End with colon (:)
 Inside the function add the program statements to be executed
 End with or without return statement

22 Unit 2: Data ,expressions, Statements

Syntax:
def fun_name(Parameter1,Parameter2…Parameter n):
 statement1
 statement2…
 statement n
 return[expression]
Example:
def my_add(a,b):
 c=a+b
 return c

6.3Function Calling: (Main Function)

 Once we have defined a function, we can call it from another function, program or
even the Python prompt.

 To call a function we simply type the function name with appropriate
arguments.

Example:

x=5
y=4
my_add(x,y)

6.4 Flow of Execution:

 The order in which statements are executed is called the flow of execution
 Execution always begins at the first statement of the program.
 Statements are executed one at a time, in order, from top to bottom.
 Function definitions do not alter the flow of execution of the program, but

remember that statements inside the function are not executed until the function
is called.

 Function calls are like a bypass in the flow of execution. Instead of going to the
next statement, the flow jumps to the first line of the called function, executes all
the statements there, and then comes back to pick up where it left off.

Note: When you read a program, don’t read from top to bottom. Instead, follow the flow
of execution. This means that you will read the def statements as you are scanning from
top to bottom, but you should skip the statements of the function definition until you
reach a point where that function is called.

6.5 Function Prototypes:

i. Function without arguments and without return type

ii. Function with arguments and without return type
iii. Function without arguments and with return type
iv. Function with arguments and with return type

23 Unit 2: Data ,expressions, Statements

i) Function without arguments and without return type

o In this type no argument is passed through the function call and no output
is return to main function

o The sub function will read the input values perform the operation and print
the result in the same block

ii) Function with arguments and without return type
o Arguments are passed through the function call but output is not return to

the main function
iii) Function without arguments and with return type

o In this type no argument is passed through the function call but output is
return to the main function.

iv) Function with arguments and with return type
o In this type arguments are passed through the function call and output is

return to the main function
 Without Return Type

Without argument With argument

def add():
 a=int(input("enter a"))
 b=int(input("enter b"))
 c=a+b
 print(c)
add()

def add(a,b):
 c=a+b
 print(c)
a=int(input("enter a"))
b=int(input("enter b"))
add(a,b)

OUTPUT:
enter a 5
enter b 10
15

OUTPUT:
enter a 5
enter b 10
15

 With return type
Without argument With argument

def add():
 a=int(input("enter a"))
 b=int(input("enter b"))
 c=a+b
 return c
c=add()
print(c)

def add(a,b):
 c=a+b
 return c
a=int(input("enter a"))
b=int(input("enter b"))
c=add(a,b)
print(c)

OUTPUT:
enter a 5
enter b 10
15

OUTPUT:
enter a 5
enter b 10
15

24 Unit 2: Data ,expressions, Statements

6.6 Parameters And Arguments:

Parameters:
 Parameters are the value(s) provided in the parenthesis when we write function

header.
 These are the values required by function to work.
 If there is more than one value required, all of them will be listed in parameter

list separated by comma.
 Example: def my_add(a,b):

Arguments :
 Arguments are the value(s) provided in function call/invoke statement.
 List of arguments should be supplied in same way as parameters are listed.
 Bounding of parameters to arguments is done 1:1, and so there should be same

number and type of arguments as mentioned in parameter list.
 Example: my_add(x,y)

6.7 RETURN STATEMENT:

 The return statement is used to exit a function and go back to the place from
where it was called.

 If the return statement has no arguments, then it will not return any values. But
exits from function.

Syntax:
return[expression]

Example:
def my_add(a,b):
 c=a+b
 return c
x=5
y=4
print(my_add(x,y))
 Output:
 9

6.8 ARGUMENTS TYPES:
1. Required Arguments
2. Keyword Arguments
3. Default Arguments
4. Variable length Arguments

 Required Arguments: The number of arguments in the function call should
match exactly with the function definition.

def my_details(name, age):
 print("Name: ", name)
 print("Age ", age)
 return
my_details("george",56)

25 Unit 2: Data ,expressions, Statements

 Output:

Name: george
Age 56

 Keyword Arguments:
Python interpreter is able to use the keywords provided to match the values with
parameters even though if they are arranged in out of order.

 def my_details(name, age):
 print("Name: ", name)
 print("Age ", age)
 return
my_details(age=56,name="george")

 Output:

Name: george
Age 56

 Default Arguments:
Assumes a default value if a value is not provided in the function call for that argument.

def my_details(name, age=40):
 print("Name: ", name)
 print("Age ", age)
 return
my_details(name="george")

 Output:

Name: george
Age 40

 Variable length Arguments
If we want to specify more arguments than specified while defining the function,
variable length arguments are used. It is denoted by * symbol before parameter.

def my_details(*name):
 print(*name)
my_details("rajan","rahul","micheal",
ärjun")

Output:

rajan rahul micheal ärjun

6.9 MODULES:
 A module is a file containing Python definitions ,functions, statements and

instructions.
 Standard library of Python is extended as modules.
 To use these modules in a program, programmer needs to import the

module.

26 Unit 2: Data ,expressions, Statements

 Once we import a module, we can reference or use to any of its functions or
variables in our code.

o There is large number of standard modules also available in python.
o Standard modules can be imported the same way as we import our user-
defined modules.
o Every module contains many function.
o To access one of the function , you have to specify the name of the module and
the name of the function separated by dot . This format is called dot
notation.

Syntax:

import module_name
module_name.function_name(variable)

Importing Builtin Module: Importing User Defined Module:
import math
x=math.sqrt(25)
print(x)

import cal
x=cal.add(5,4)
print(x)

Built-in python modules are,
1.math – mathematical functions:
some of the functions in math module is,

 math.ceil(x) - Return the ceiling of x, the smallest integer greater

27 Unit 2: Data ,expressions, Statements

than or equal to x
 math.floor(x) - Return the floor of x, the largest integer less than or
equal to x.

 math.factorial(x) -Return x factorial. math.gcd(x,y)- Return the
greatest common divisor of the integers a and b

 math.sqrt(x)- Return the square root of x
 math.log(x)- return the natural logarithm of x
 math.log10(x) – returns the base-10 logarithms
 math.log2(x) - Return the base-2 logarithm of x.
 math.sin(x) – returns sin of x radians
 math.cos(x)- returns cosine of x radians
 math.tan(x)-returns tangent of x radians
 math.pi - The mathematical constant π = 3.141592
 math.e – returns The mathematical constant e = 2.718281

 2 .random-Generate pseudo-random numbers
 random.randrange(stop)
 random.randrange(start, stop[, step])
 random.uniform(a, b)
 -Return a random floating point number

ILLUSTRATIVE PROGRAMS
Program for SWAPPING(Exchanging)of
values

Output

a = int(input("Enter a value "))
b = int(input("Enter b value "))
c = a
a = b
b = c
print("a=",a,"b=",b,)

Enter a value 5
Enter b value 8
a=8
b=5

Program to find distance between two
points

Output

import math
x1=int(input("enter x1"))
y1=int(input("enter y1"))
x2=int(input("enter x2"))
y2=int(input("enter y2"))
distance =math.sqrt((x2-x1)**2)+((y2-
y1)**2)
print(distance)

enter x1 7
enter y1 6
enter x2 5
enter y2 7
2.5

Program to circulate n numbers Output:
a=list(input("enter the list")) enter the list '1234'

https://docs.python.org/3/library/random.html#module-random

28 Unit 2: Data ,expressions, Statements

print(a)
for i in range(1,len(a),1):
 print(a[i:]+a[:i])

['1', '2', '3', '4']
['2', '3', '4', '1']
['3', '4', '1', '2']
['4', '1', '2', '3']

Part A:
1. What is interpreter?
2. What are the two modes of python?
3. List the features of python.
4. List the applications of python
5. List the difference between interactive and script mode
6. What is value in python?
7. What is identifier? and list the rules to name identifier.
8. What is keyword?
9. How to get data types in compile time and runtime?
10. What is indexing and types of indexing?
11. List out the operations on strings.
12. Explain slicing?
13. Explain below operations with the example

(i)Concatenation (ii)Repetition
14. Give the difference between list and tuple
15. Differentiate Membership and Identity operators.
16. Compose the importance of indentation in python.
17. Evaluate the expression and find the result

 (a+b)*c/d
 a+b*c/d

18. Write a python program to print ‘n’ numbers.
19. Define function and its uses
20. Give the various data types in Python
21. Assess a program to assign and access variables.
22. Select and assign how an input operation was done in python.
23. Discover the difference between logical and bitwise operator.
24. Give the reserved words in Python.
25. Give the operator precedence in python.
26. Define the scope and lifetime of a variable in python.
27. Point out the uses of default arguments in python
28. Generalize the uses of python module.
29. Demonstrate how a function calls another function. Justify your answer.
30. List the syntax for function call with and without arguments.
31. Define recursive function.
32. What are the two parts of function definition? give the syntax.
33. Point out the difference between recursive and iterative technique.
34. Give the syntax for variable length arguments.

29 Unit 2: Data ,expressions, Statements

Part B
1. Explain in detail about various data types in Python with an example?
2. Explain the different types of operators in python with an example.
3. Discuss the need and importance of function in python.
4. Explain in details about function prototypes in python.
5. Discuss about the various type of arguments in python.
6. Explain the flow of execution in user defined function with example.
7. Illustrate a program to display different data types using variables and literal

constants.
8. Show how an input and output function is performed in python with an example.
9. Explain in detail about the various operators in python with suitable examples.
10. Discuss the difference between tuples and list
11. Discuss the various operation that can be performed on a tuple and Lists

(minimum 5)with an example program
12. What is membership and identity operators.
13. Write a program to perform addition, subtraction, multiplication, integer

division, floor division and modulo division on two integer and float.
14. Write a program to convert degree Fahrenheit to Celsius
15. Discuss the need and importance of function in python.
16. Illustrate a program to exchange the value of two variables with temporary

variables
17. Briefly discuss in detail about function prototyping in python. With suitable

example program
18. Analyze the difference between local and global variables.
19. Explain with an example program to circulate the values of n variables
20. Analyze with a program to find out the distance between two points using

python.
21. Do the Case study and perform the following operation in tuples i) Maxima

minima iii)sum of two tuples iv) duplicate a tuple v)slicing operator vi)
obtaining a list from a tuple vii) Compare two tuples viii)printing two tuples of
different data types

22. Write a program to find out the square root of two numbers.

	UNIT II
	DATA, EXPRESSIONS, STATEMENTS
	Integrated Development Learning Environment (IDLE):
	6.3Function Calling: (Main Function)

